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Abstract- Web applications have become 

fundamental components of the modern 

digital ecosystem, facilitating 

communication, commerce, and data 

exchange. However, their growing 

complexity and interconnectivity have 

made them prime targets for cyber-attacks. 

Traditional penetration testing methods, 

although effective, are often manual, time-

consuming, and inconsistent. In response, 

Virtual Penetration Testing (VPT) has 

emerged as a next-generation solution that 

leverages automation, artificial intelligence 

(AI), and model-driven engineering to 

perform continuous, scalable, and efficient 

security assessments. This review explores 

the evolution of VPT, its methodologies, 

and implementation frameworks. Drawing 

from prominent research, especially the 

work by Shilpa R. G. et al. (2024), this 

paper dissects various approaches to VPT, 

comparing their architectures, advantages, 

limitations, and effectiveness. The 

literature review highlights the state-of-

the-art developments in VPT, while 

comparative analysis underscores the key 

differentiators. Additionally, the paper 

outlines previous methodologies, 

summarizes empirical findings, and 

identifies potential areas for enhancement. 

Through comprehensive analysis and 

structured presentation, this study 

contributes a detailed perspective on VPT 

as a transformative force in securing web 

applications. 

Keywords-Virtual Penetration Testing, 

Web Application Security, Automated 

Security Testing, Model-Driven 
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I. INTRODUCTION 

1.1 Background and Motivation 

In the era of digital transformation, web 

applications have become the backbone of 

modern communication, commerce, 

finance, healthcare, and government 

services. With the growth of cloud 

computing, mobile integration, and 

Software-as-a-Service (SaaS) platforms, 

web applications now handle sensitive data 

and critical business functions on a 
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massive scale. However, this evolution has 

been paralleled by a sharp rise in cyber-

attacks targeting these applications. 

According to IBM Security (2023), web 

application vulnerabilities accounted for 

nearly 39% of all security breaches, 

making them one of the most exploited 

attack vectors. High-profile incidents 

involving SQL injection, cross-site 

scripting (XSS), remote code execution, 

and broken access control highlight the 

real-world consequences of insecure 

applications—from financial loss and 

brand damage to regulatory penalties and 

legal liabilities. 

As organizations adopt DevOps and agile 

methodologies, security testing must also 

evolve. Traditional security assessments 

conducted at the end of development 

cycles are no longer sufficient. Instead, 

there is a need for proactive, integrated, 

and intelligent testing mechanisms that can 

keep pace with rapid development and 

deployment practices. This critical need 

forms the foundation for exploring more 

advanced approaches such as Virtual 

Penetration Testing (VPT). 

1.2 Challenges in Traditional 

Penetration Testing 

Penetration testing, or “pen-testing,” is the 

process of simulating cyber-attacks to 

identify vulnerabilities in a system or 

application before they can be exploited by 

malicious actors. Traditional pen-testing 

typically involves manual assessments 

performed by security experts, who follow 

structured methodologies such as 

OSSTMM, PTES, or NIST guidelines. 

While this approach can be thorough and 

customized, it is also resource-intensive 

and inherently constrained by the skill, 

time, and availability of testers. 

Key limitations of traditional penetration 

testing include: 

• Manual and labour-intensive: 

Requires significant effort by 

skilled security professionals. 

• Time-consuming and expensive: 

Full engagement may take days or 

weeks and often carries high costs. 

• Limited in scope and frequency: 

Usually performed periodically, 

leaving systems vulnerable 

between tests. 

• Highly dependent on tester 

expertise: Results may vary based 

on tester experience, tools, and 

creativity. 

• Subject to human error: May miss 

vulnerabilities, especially in 

complex or dynamic application 

environments. 
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In fast-paced development environments, 

such limitations hinder the ability to 

ensure continuous security validation. 

Moreover, the need to frequently adapt to 

evolving threat landscapes calls for 

solutions that are agile, repeatable, and 

integrated with modern software 

development life cycles (SDLC). 

1.3 Emergence of Virtual Penetration 

Testing (VPT) 

The shortcomings of traditional 

approaches have paved the way for the 

emergence of Virtual Penetration Testing 

(VPT) —a more scalable, automated, and 

intelligent alternative to manual pen-

testing. VPT integrates key technologies 

such as virtualization, automation, 

artificial intelligence (AI), machine 

learning (ML), and orchestration tools to 

enable continuous, high-coverage security 

assessments. 

A VPT system operates in virtual 

environments (containers, cloud testbeds, 

or sandboxed environments) where 

applications are dynamically analysed 

without affecting the live system. These 

frameworks simulate real-world attack 

scenarios using automated scripts and AI-

driven logic. They can identify, prioritize, 

and even report vulnerabilities in real time. 

Key features of VPT include: 

• Automated Test Execution: 

Systematically launches attack 

payloads and fuzzing sequences 

using predefined or AI-generated 

logic. 

• Real-Time Reporting: Instantly 

flags detected vulnerabilities, often 

with detailed remediation 

suggestions. 

• Integration with CI/CD Pipelines: 

Triggers tests upon code commits 

or during release stages, aligning 

security with DevSecOps practices. 

• AI and ML Intelligence: Employs 

models to recognize patterns, 

predict vulnerabilities, and adapt to 

different application behaviours. 

Recent frameworks such as PentestGPT 

(Zhang et al., 2023), AutoVPT (Shilpa R. 

G. et al., 2024), and GAIL-PT (Zhang et 

al., 2022) exemplify how AI is 

transforming penetration testing. These 

tools can perform tasks such as 

reconnaissance, attack path generation, and 

even exploit crafting with minimal human 

input. 

Ultimately, the adoption of VPT represents 

a shift toward proactive and predictive 

security testing, enabling organizations to 

identify vulnerabilities earlier, respond 

faster, and maintain a stronger security 
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posture in a landscape of ever-evolving threats. 

 

 

II. LITERATURE REVIEW 

2.1 Overview of VPT Methodologies 

Over the past decade, the domain of 

penetration testing has undergone a 

significant transformation due to 

advancements in AI, automation, and 

formal modelling. Virtual Penetration 

Testing (VPT) represents a sophisticated 

evolution of these technologies, combining 

classical security testing principles with 

next-generation computing paradigms. 

Several methodologies have emerged to 

operationalize VPT, each with distinct 

technical frameworks, operational 

philosophies, and implementation 

strategies. 

• Model-Driven Penetration Testing 

(Shilpa R. G. et al., 2024): 

This approach utilizes formal 

modelling techniques such as 

Unified Modelling Language 

(UML) or State charts to describe 

the application's behaviour and 

generate test scenarios 

automatically. The model-driven 

methodology emphasizes 

abstraction and structure, allowing 
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for the automated creation of test 

cases based on control flow, data 

flow, and state transitions. It is 

particularly useful in environments 

where documentation and model-

based development are standard 

practices. 

• AI-Based Testing Frameworks 

(e.g., PentestGPT) (Zhang et al., 

2023): 

These frameworks employ large 

language models (LLMs) like GPT-

3.5 or GPT-4 to replicate the 

decision-making of human 

penetration testers. They can 

understand application contexts, 

generate reconnaissance queries, 

identify potential exploits, and 

compose dynamic payloads. 

PentestGPT, for example, mimics a 

multi-agent testing approach where 

the language model coordinates 

various automated tasks in 

sequence, enabling a holistic 

assessment process. 

• Reinforcement Learning 

Techniques (e.g., GAIL-PT) 

(Zhang et al., 2022): 

Reinforcement Learning (RL) 

methods apply decision-making 

algorithms that learn optimal 

actions based on feedback from the 

environment. GAIL-PT leverages 

Generative Adversarial Imitation 

Learning to train a penetration 

tester agent on expert behaviour. 

Over time, the agent learns to 

conduct increasingly complex 

attacks with minimal human 

intervention. RL is particularly 

effective in dynamic and 

adversarial settings but often 

requires high computational power 

and significant training time. 

• OWASP-ASVS-based Dynamic 

Security Scanning (OWASP 

Foundation, 2023): 

The OWASP Application Security 

Verification Standard (ASVS) 

provides a structured checklist of 

security controls. Tools like 

OWASP ZAP and Burp Suite use 

this checklist to conduct automated 

dynamic scans, identifying 

deviations from best practices and 

known vulnerability patterns. 

While these methods are less 

adaptive than AI-based models, 

they offer strong standardization 

and are widely accepted in 

compliance-driven industries. 

Each methodology contributes uniquely to 

the evolution of VPT. Some focus on 

standardization and formal verification, 

while others rely on adaptive learning and 

AI reasoning. Their performance and 
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applicability vary significantly depending 

on organizational context, system 

complexity, and testing objectives. 

2.2 Comparative Table of VPT Methods 

Methodology Key Features Tools Used Strengths Weaknesses 

Model-Driven 

VPT 

Uses state 

modelling to 

generate test cases 

UML, 

Payload 

Generator 

High accuracy, 

automated 

Requires complete 

models 

PentestGPT Uses language 

models to 

automate steps 

GPT-4, 

Nmap, 

Metasploit 

Adaptive, 

context-aware 

Prompt 

engineering 

dependency 

GAIL-PT RL-based 

automation of test 

sequences 

GAIL, Gym Intelligent 

learning 

High 

computational 

cost 

OWASP-ASVS 

Driven 

Follows industry 

standards 

ZAP, Burp 

Suite 

Standardized, 

robust 

Limited 

innovation 

 

This table showcases a high-level 

comparison of the major VPT frameworks 

in practice. Each tool or method operates 

along different axes: while model-driven 

approaches emphasize precision through 

formalization, AI-driven tools thrive on 

flexibility and breadth. Dynamic security 

scanning ensures compliance but may not 

account for evolving zero-day threats. 

2.3 Discussion of Literature 

A critical analysis of the literature reveals 

that AI-based methods are transforming 

the landscape of penetration testing 

through automation, scalability, and 

intelligent decision-making. For example, 

PentestGPT demonstrates the potential of 

natural language processing (NLP) in 

simulating realistic pentest dialogues and 

reasoning through application logic. It can 

parse API documentation, identify 

endpoints, and craft tailored exploits, tasks 

that traditionally required seasoned human 

testers. The ability to automate this 

workflow not only reduces testing costs 

but also ensures consistency and 

traceability. 

Similarly, GAIL-PT introduces a novel 

application of reinforcement learning, 
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where the agent learns from expert 

behaviour to refine its testing policy. This 

technique has been shown to improve 

coverage and attack efficacy over time. 

However, its adoption is currently limited 

by computational overhead, training data 

availability, and the complexity of 

deployment in real-world systems. 

Model-driven approaches offer rigorous, 

structured testing rooted in formal 

software engineering principles. By 

representing applications through abstract 

models, testers can ensure comprehensive 

coverage of system states, transitions, and 

logic flows. These methods are highly 

effective in industries with strong 

requirements for compliance, 

documentation, and reliability (e.g., 

banking, healthcare). However, their 

reliance on accurate models remains a 

bottleneck. 

OWASP-based scanning tools remain the 

most widely adopted due to their ease of 

integration, standardized methodology, and 

minimal learning curve. Tools like Burp 

Suite and OWASP ZAP are equipped with 

rich vulnerability databases and plugin 

ecosystems. However, their lack of 

intelligence limits their ability to adapt to 

custom workflows, dynamic UI states, or 

evolving threats. 

In conclusion, while no single 

methodology is universally superior, 

hybrid frameworks that combine the 

structure of model-driven testing, the 

intelligence of AI, and the robustness of 

OWASP guidelines appear most 

promising. The current literature suggests 

a strong movement toward multi-modal 

VPT solutions, leveraging the best aspects 

of each methodology to address modern 

web application security challenges. 

III. PAST METHODOLOGIES 

USED 

Before the evolution of Virtual Penetration 

Testing (VPT), organizations relied on a 

combination of manual, semi-automated, 

and traditional scanning methods to assess 

the security posture of web applications. 

Although these methodologies laid the 

foundation for vulnerability management, 

they were often reactive and inconsistent 

in scope. Understanding these legacy 

approaches is essential for appreciating the 

improvements VPT introduces. 

3.1 Static and Dynamic Analysis 

Security testing initially revolved around 

two core strategies: Static Application 

Security Testing (SAST) and Dynamic 

Application Security Testing (DAST). 

• Static Analysis (SAST) involves 

examining the application’s source 

code or binaries without executing 
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the application. Tools like Fortify, 

SonarQube, and Checkmarx 

parse the code to identify 

vulnerabilities such as buffer 

overflows, insecure API calls, 

hardcoded credentials, and SQL 

injection points. These tools 

operate early in the development 

cycle (shift-left testing) and are 

useful for identifying design-time 

flaws. 

• Dynamic Analysis (DAST), on the 

other hand, involves interacting 

with the application in its runtime 

environment to uncover 

vulnerabilities. Tools such as 

OWASP ZAP, Burp Suite, 

Acunetix, and AppSpider 

simulate external attacks to identify 

issues like improper session 

handling, authentication flaws, or 

runtime misconfigurations. DAST 

tools observe application behaviour 

and responses to various inputs, 

attempting to mimic an actual 

attack scenario. 

While both techniques are critical to 

comprehensive security, they are limited in 

various ways: 

• SAST tools may produce high false 

positives and require access to 

source code, which isn't always 

feasible (e.g., with third-party 

applications). 

• DAST tools may struggle with 

modern SPAs (Single Page 

Applications), dynamic content, or 

APIs that require multi-step 

authentication. 

• Neither method provides full 

coverage in isolation, and both lack 

intelligence and contextual 

awareness—particularly in 

complex, cloud-native, or API-rich 

environments. 

These gaps ultimately led to the 

development of VPT systems, which aim 

to offer contextualized, continuous, and 

intelligent analysis through automation 

and AI. 

3.2 Manual Penetration Testing 

Manual penetration testing has long been 

considered the gold standard in 

cybersecurity due to its ability to uncover 

complex, logic-based vulnerabilities that 

automated tools might miss. It typically 

follows a structured process: 

1. Reconnaissance – Gathering 

information about the target. 

2. Threat Modelling – Mapping out 

potential attack surfaces. 
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3. Exploitation – Attempting real-

world attacks (e.g., SQLi, XSS, 

SSRF). 

4. Reporting – Documenting 

vulnerabilities and mitigation 

recommendations. 

Manual testers often use a variety of 

tools—Nmap, Metasploit, Wireshark, 

and custom scripts—combined with their 

experience and intuition to identify 

weaknesses. This approach excels in 

identifying business logic vulnerabilities, 

authorization bypasses, or multi-step 

attack vectors that automated tools might 

miss. 

However, this method also has serious 

drawbacks: 

• It is time-consuming and labour-

intensive. 

• Quality varies significantly 

depending on tester experience and 

methodology. 

• It is usually conducted 

periodically, meaning applications 

are untested for long periods. 

• Manual testing is costly, making it 

impractical for frequent or small-

scale deployments. 

These factors limit its utility in DevOps 

environments where code changes are 

frequent and rapid feedback is necessary. 

As a result, manual testing, while valuable, 

is now often augmented or replaced by 

VPT for scalability and repeatability. 

3.3 Scripted Automation 

In an effort to reduce manual workload, 

organizations began developing custom 

scripts and tools to automate routine 

penetration testing tasks. These scripts 

could: 

• Automate login attempts or session 

hijacks. 

• Repeatedly run vulnerability 

scanners with predefined 

parameters. 

• Parse server responses for common 

misconfigurations or known CVEs. 

Frameworks like Selenium (for automated 

browser interaction), Bash/Python 

scripting, and basic cron jobs were widely 

used. Additionally, tools like Nikto, 

WFuzz, and DirBuster allowed for semi-

automated attacks. 

While helpful, these solutions came with 

their own limitations: 

• Maintenance Overhead: Scripts 

needed constant updating to 
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accommodate new attack 

techniques or application changes. 

• Lack of Adaptability: Most scripts 

followed rigid paths and could not 

respond to unforeseen behaviours 

or complex application logic. 

• Scalability Issues: Scripts were 

typically project-specific and did 

not generalize well across 

platforms. 

• Limited Intelligence: Without AI, 

scripts lacked the decision-making 

needed for exploratory testing or 

adaptive exploitation. 

Despite these limitations, scripted 

automation played a crucial role in 

demonstrating the need for scalable, 

intelligent, and self-learning systems—

leading directly to the rise of Virtual 

Penetration Testing. 

IV. PAST RESULTS 

Evaluating the performance of any security 

testing methodology requires examining 

empirical results across real-world 

applications. In this context, the 

implementation and assessment of Virtual 

Penetration Testing (VPT) frameworks, 

particularly those rooted in model-driven 

approaches, provide valuable benchmarks. 

One prominent study in this area is the 

work by Shilpa R. G. et al. (2024), which 

proposed a formalized and automated 

penetration testing framework tailored for 

financial web applications. 

4.1 Case Study: Shilpa R. G. et al. 

(2024) 

Shilpa R. G. and colleagues developed a 

Model-Driven VPT Framework 

specifically for the banking domain—a 

sector with stringent security requirements 

due to the sensitive nature of financial 

data. The framework was designed to 

operate on structured application models 

that represent UI flows, backend 

interactions, and data state transitions. 

The core idea behind the framework was 

to leverage state models, derived from 

Unified Modelling Language (UML) 

diagrams, to automatically generate attack 

vectors that mimic the actions of real-

world adversaries. These payloads were 

constructed based on a library of known 

vulnerabilities (e.g., SQL injection, 

command injection, authentication bypass) 

and customized per the context of each 

modelled state. 

Key components of their system included: 

• Model Parser: Converts 

application diagrams into machine-

readable formats. 
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• Attack Generator: Uses 

contextual information from the 

model to create relevant payloads. 

• Execution Environment: Deploys 

and executes payloads on isolated 

test instances. 

• Report Engine: Aggregates result 

and identifies vulnerabilities by 

analysing system responses. 

This structured approach ensured that tests 

were consistent, repeatable, and could be 

scaled across various endpoints and user 

workflows. 

4.2 Evaluation Metrics 

The authors used multiple performance 

indicators to validate the effectiveness of 

their proposed VPT system. Key metrics 

included: 

• Coverage: 

The model-driven framework was 

able to achieve 95% endpoint 

coverage, a significant 

improvement over traditional 

manual methods which often miss 

lesser-known or deeply nested 

functionalities. This metric refers 

to the ability of the system to test a 

wide variety of user interface 

components, backend APIs, and 

workflows. 

• False Positives: 

Compared to conventional 

scanners, which tend to produce 

excessive false alerts, the VPT 

approach reduced false positives 

by 28%. This improvement was 

attributed to the context-aware 

nature of the payload generation 

process, which avoided generic or 

misaligned tests. 

• Time Efficiency: 

The system demonstrated a 40% 

reduction in time required to 

complete a full penetration testing 

cycle. This efficiency gain is 

crucial in fast-paced DevOps 

environments where security 

checks must not delay 

deployments. 

• Adaptability: 

One of the key advantages was 

seamless integration into CI/CD 

workflows. The VPT system 

supported automation triggers on 

code commits and deployments, 

ensuring continuous security 

validation with minimal human 

intervention. 

These metrics not only highlight the 

technical superiority of the model-driven 

VPT approach but also demonstrate its 
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operational feasibility in enterprise-grade systems. 

 

 

4.3 Comparative Performance 

When benchmarked against traditional 

manual and scripted penetration testing 

methods, the model-driven VPT system 

consistently outperformed in several 

dimensions: 

• Accuracy: 

Manual methods rely heavily on 

the skill of the tester and may 

overlook complex or less obvious 

vulnerabilities. The model-driven 

approach ensures that all modelled 

states and transitions are tested, 

leaving fewer blind spots. 

• Coverage: 

While manual and scripted 

methods often focus on high-risk or 

well-known paths, the model-

driven VPT systematically explores 

all feasible paths based on 

application logic. This ensures 

exhaustive testing. 

• Reproducibility: 

Manual testing is inherently 

inconsistent due to varying 

expertise and judgment. The VPT 

system offers repeatable and 

verifiable test sequences, making 

audits and re-tests significantly 

easier. 

• Maintainability: 

Because the test cases are 

generated from models, updates to 

the application can be reflected 

simply by updating the models, 

reducing the burden of rewriting 

test scripts. 

• Security Intelligence: 

The structured and intelligent 

generation of payloads ensures a 

higher likelihood of detecting 

sophisticated vulnerabilities like 

multi-step logic flaws or privilege 

escalation issues. 

However, the case study also pointed out 

some limitations: 

• The accuracy of results is highly 

dependent on the quality of the 

input models. Incomplete or 

outdated models may lead to 

missed vulnerabilities. 

• The framework may require 

domain-specific tuning for 

applications outside the banking or 

financial sectors. 
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Despite these limitations, the study serves 

as a robust proof-of-concept for integrating 

formal modelling, automation, and security 

intelligence in modern web application 

testing strategies. 

V. AREAS OF IMPROVEMENT 

Despite its transformative potential, 

Virtual Penetration Testing (VPT) is still 

an evolving domain with several technical, 

operational, and infrastructural limitations. 

While many studies and implementations 

have shown promising results, real-world 

adoption is often hindered by practical 

barriers. Addressing these shortcomings is 

crucial for wider acceptance and efficacy 

of VPT frameworks across diverse 

industries. 

5.1 Model Incompleteness 

One of the fundamental challenges in 

model-driven VPT frameworks is the 

dependence on accurate and complete 

application models. These models are 

typically generated using UML diagrams, 

finite state machines, or custom 

abstractions of user workflows. However, 

in most production environments: 

• Models are either unavailable or 

outdated, especially in fast-paced 

agile or DevOps teams. 

• Business logic, exception handling, 

and dynamic content may not be 

fully captured by static diagrams. 

• Legacy systems may not have any 

formal documentation, making 

reverse engineering of models an 

error-prone process. 

Incomplete models lead to limited test 

coverage, as important application paths 

might be ignored or misrepresented. 

Furthermore, over-reliance on theoretical 

attack paths may result in “clean” test 

results that do not reflect real-world 

exposure. 

Future Direction: Research is needed to 

explore automated model extraction 

tools using source code analysis, runtime 

monitoring, or AI-assisted UI crawling to 

generate or update models dynamically. 

 



 

5.2 Computational Costs 

The use of Artificial Intelligence (AI)

Reinforcement Learning (RL)

frameworks brings about significant 

computational demands. Training 

intelligent agents like those in 

requires: 

• High-performance computing 

(HPC) infrastructure. 

• Large and diverse datasets of 

application behaviours.

• Multiple iterations to refine models 

through trial and error.

These requirements pose a major barrier 

for small-to-medium enterprises (SMEs)

and organizations without dedicated 

security research teams. Even once trained, 

inference times for AI models can impact 

real-time responsiveness, especially in 

CI/CD pipelines where speed is crucial.

Future Direction: Efforts should focus on 

developing lightweight and efficient AI 

models using transfer learning, edge
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Artificial Intelligence (AI) and 

Reinforcement Learning (RL) in VPT 

frameworks brings about significant 

computational demands. Training 

intelligent agents like those in GAIL-PT 

performance computing 

 

Large and diverse datasets of 

behaviours. 

Multiple iterations to refine models 

through trial and error. 

These requirements pose a major barrier 

medium enterprises (SMEs) 

and organizations without dedicated 

security research teams. Even once trained, 

inference times for AI models can impact 

time responsiveness, especially in 

CI/CD pipelines where speed is crucial. 

: Efforts should focus on 

ightweight and efficient AI 

using transfer learning, edge-

computing optimization, or pre

agent libraries tailored for common 

application frameworks.

5.3 Integration Complexity

Although VPT aims to support continuous 

testing, integration with

development pipelines

bottleneck. Security teams face difficulties 

in embedding VPT tools into tools like 

Jenkins, GitLab CI, Azure DevOps, or 

GitHub Actions due to: 

• Poor API documentation or version 

instability. 

• Incompatibility with pipe

triggers or build agents.

• Lack of standard interfaces for 

reporting or vulnerability tracking 

(e.g., Jira, Bugzilla).

Moreover, VPT results often require 

manual interpretation, which contradicts 

the automation principle of CI/CD.

Future Direction: The

plug-and-play VPT modules

 

computing optimization, or pre-trained 

agent libraries tailored for common 

application frameworks. 

5.3 Integration Complexity 

Although VPT aims to support continuous 

integration with modern 

development pipelines remains a 

bottleneck. Security teams face difficulties 

in embedding VPT tools into tools like 

Jenkins, GitLab CI, Azure DevOps, or 

 

Poor API documentation or version 

Incompatibility with pipeline 

triggers or build agents. 

Lack of standard interfaces for 

reporting or vulnerability tracking 

(e.g., Jira, Bugzilla). 

Moreover, VPT results often require 

, which contradicts 

the automation principle of CI/CD. 

: There is a need for 

play VPT modules, standard 
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output formats (like SARIF), and support 

for popular DevSecOps toolchains. 

Vendor-neutral guidelines could help 

promote interoperability across platforms. 

5.4 User Expertise 

A major barrier to VPT adoption is the 

steep learning curve associated with 

certain tools. Model-driven frameworks 

may require: 

• Knowledge of software modelling 

languages (UML, SysML). 

• Familiarity with scripting or 

domain-specific languages. 

• Understanding of AI/ML 

algorithms and parameters. 

This technical barrier excludes many 

security analysts, developers, and QA 

engineers who might otherwise benefit 

from VPT. It also introduces risks of 

misconfiguration or improper model 

design, which can compromise test 

validity. 

Future Direction: Usability research in 

the VPT space should aim to: 

• Create visual drag-and-drop 

modelling environments. 

• Offer template libraries and 

guided workflows for common 

test scenarios. 

• Incorporate natural language 

interfaces powered by LLMs (like 

PentestGPT) to enable command-

driven testing with minimal 

technical input. 

Summary: 

To ensure VPT achieves mainstream 

adoption and operational impact, future 

frameworks must overcome technical 

constraints, streamline integration, and 

lower entry barriers. As the field matures, 

collaboration between cybersecurity 

researchers, software developers, and UX 

designers will be key in addressing these 

gaps. 

VI. CONCLUSION 

Virtual Penetration Testing (VPT) is not 

just an enhancement of traditional security 

testing—it represents a fundamental shift 

in how we approach web application 

security in the modern digital age. By 

integrating automation, artificial 

intelligence (AI), and formal modelling 

techniques, VPT transcends the 

limitations of manual and static 

approaches, introducing a new era of 

continuous, intelligent, and scalable 

security assessment. 

The growing complexity of web 

applications—marked by dynamic APIs, 

microservices, and real-time data 

interactions—requires equally 
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sophisticated methods to ensure security. 

Traditional penetration testing, while 

valuable, is ill-equipped to handle the 

demands of rapid software development 

cycles and evolving cyber threats. VPT 

fills this gap by enabling security 

validations that are not only faster and 

more consistent, but also adaptive and 

context-aware. 

Current VPT methodologies such as 

Model-Driven Testing, AI-based 

frameworks like PentestGPT, and 

Reinforcement Learning agents (e.g., 

GAIL-PT) have showcased significant 

improvements in test coverage, accuracy, 

and operational efficiency. They offer the 

potential to automatically discover logic 

flaws, misconfigurations, and zero-day 

vulnerabilities that may otherwise go 

unnoticed. However, these advancements 

are not without limitations. As highlighted 

in this review, several areas—such as 

model completeness, integration with 

CI/CD pipelines, computational cost, 

and user accessibility—pose real 

challenges that must be addressed for VPT 

to reach its full potential. 

Looking ahead, hybrid VPT frameworks 

that combine multiple testing paradigms 

could provide the best of both worlds—

leveraging the precision of model-based 

strategies with the adaptability and 

scalability of AI-driven methods. 

Additionally, incorporating self-healing 

models, transfer learning, and 

automated model extraction tools may 

mitigate many of the current drawbacks.

Equally important is the need for 

standardization and interoperability. 

The security testing landscape would 

greatly benefit from community-driven 

benchmarks, APIs, reporting formats (e.g., 

SARIF), and integration toolkits. This 

would accelerate the adoption of VPT in 

industry settings and foster greater trust in 

automated testing systems. 

Finally, the path forward must be paved 

through collaboration between 

academia, industry, and open-source 

communities. Academic research can 

pioneer theoretical advances, while 

industry contributes real-world constraints 

and datasets. Open-source initiatives can 

help bridge gaps by offering modular, 

accessible tools that evolve with 

community feedback. 

In conclusion, VPT is poised to become a 

cornerstone of secure software 

development. With focused research, 

iterative innovation, and cooperative 

effort, Virtual Penetration Testing can 

evolve into a comprehensive, intelligent, 

and indispensable toolset for 

organizations striving to secure their 
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digital infrastructure in an increasingly 

hostile cyber environment. 
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